Basic Strabismus

Paul M. Larson, MMSc, MBA, COMT, COE
Associate in Ophthalmology
Program Director, Emory University
Master’s in Medical Science Program

Do You Feel this Way when you hear about Strabismus???

Special Thanks to…
- Lisa Rovick, CO, COMT
 - Provided images of her patients and input on their use
- Kenneth Kayne, COT
 - My first instructor, who "lit the flame"
- All my patients and colleagues – they keep us honest by “helping us learn” from our mistakes!

Triage/History: Onset
- WHEN did your symptoms FIRST start?
- Tell me about the first time it happened.
 - Let the patient tell you...
- How long did the symptoms last?
- Could you make it go away?
- How often does this happen?
- Is there any pattern?
- Any Family History? Systemic History? Medications? Developmental History?

Triage/History: describe images
- monocular vs binocular
 - (“I have double vision in my right eye.”)
 - (Does it go away with either eye covered??)
- placement of the images…...direction
- description of the images….quality

Triage/History: Associated Systemic Disease
- Grave’s Disease
- Diabetes
- Myasthenia Gravis
- Multiple Sclerosis
- Parkinson’s
- others?
- Recent viral infection?
Triage/History: Associated Symptoms

- **NEW** ptosis
- **NEW** anisocoria
 - pupils unequal...old pictures sometimes help
- Pain
- Numbness/tingling in extremities
- Balance problems/dizziness
- Fatigue

Triage/History: Medications

- What medications are you taking? Is there anything new?
- some medications may affect accommodation
- some medications may reduce control of a pre-existing phoria

Look at the patient: facial asymmetry

Look at the patient: how do glasses sit on the face?

This patient has 8 ∆ base out in each lens. Is vertical prism is induced?

Look at the patient: Media opacities

Look at the patient: Head position
Head Tilting: IV N Palsy

Retinal Correspondence
- Nasal retina corresponds to temporal field
- Superior retina = inferior field
- Temporal retina = nasal field
- Inferior retina = superior field

Ocular Motility

Anatomy
- CN III innervates SR, IR, MR, IO and levator palpebrae superioris
- CN IV innervates SO – be aware of Trochlear damage if trauma
- CN VI innervates LR

Ocular Anatomy: Muscles

Right Eye

Superior Rectus
Superior Oblique
Lateral Rectus
Medial Rectus
Inferior Rectus
Inferior Oblique

Ocular Motility

Anatomy
- Insertion: “where they stick to eye”
 - Four rectus muscles insert in an anterior direction near the corneal limbus
 - “Spiral of Tillaux”
 - SO inserts posteriorly after passing through trochlea at sup-nas orbit
 - IO inserts posteriorly very near macula

Ocular Motility

Anatomy
- Origin: “where they start”
 - All but IO start at back of orbit near optic foramen
 - IO starts on mid-anterior medial orbital wall – only one of the 6 that does NOT start at back of orbit
Ocular Motility - Terminology

- **Duction**
 - action of one muscle
- **Versions**
 - two muscles, same direction
- **Vergences**
 - two muscles, opposite direction
- Agonist, antagonist, synergist
- Recession, Resection (surgical terms)

Sherrington’s Law

- Also known as Law of Synergistic and Antagonistic Muscles (“One Eye” Law)

To move to the right, you contract your RLR “agonist” a certain amount and you relax the “antagonistic” muscle (RMR) an equal amount to achieve smooth movements of the same amount.

Hering’s Law

- Also called the Law of Yoke Muscles
 - Also known as “Two Eye Law”

Fixing eye determines how much your “agonist” muscle contracts, then an equal amount is given to your “synergist” muscle in the other eye.

- R gaze would have RLR and LMR working equally.

Yoke Muscles

- Pairs of muscles (1 ea. Eye) that work together to move eyes in desired version
- “Yoked together”

Like RMR and LLR to move your eyes to your left!
Hering’s Law (Yoke)

Hering’s Law (motor correspondence)

the law of eyes working in pairs

Motility

- Cover testing
 - Cover-uncover test
 - Alternate cover test
 - Using Prisms to measure ("neutralize") deviations of the eyes

Cover-Uncover test

- One eye covered and then uncovered
- You look at the UNCOVERED eye
- Watch for movement of this eye (NOT the one you are covering and uncovering)
- For detection of TROPIAS – each eye is separately done

Alternation

- Seems like each eye has the tropia!
- Example – R eye covered, left moves in to fixate, then left eye covered and R moves in to fixate
- Cover is not moved over the nose – move it under when going from R-L and L-R

Alternate cover test

- Movement of the cover across the nose from one eye and then back to first
 - Also known as “cross-cover” test
- Detects PHORIAS when TROPIAS not present.
- Ex – cover-uncover shows no movement when looking at uncovered eye. Now you look at the eye under the cover as you go across the nose to the other eye

Cover Testing: measure near and distance
Prisms
- AIM the APEX towards the deviation
 - Eso (inwards eye) would need Base OUT to neutralize
 - Exo (outwards eye) needs Base IN
- PLACE the BASE in the direction the eye is moving
 - Ex.: You saw right eye move from OUT to IN (moving inwards) – now you place the prism base IN

Eso, Exo, Hyper
- In ESO deviations, the eye seems to move out (from where it **was**)
- EXO deviations will have the eye moving inwards (it **was** out, now it has to move in to fixate)
- HYPER deviations show the eyes moving upwards and downwards (usually with the upper lid at the same time)
 - Named after the “higher” eye

Types of deviations
- **Eso**
 - E, ET, E(T)
- **Exo**
 - X, XT, X(T)
- Vertical
 - HT, H(T), HOT, HO(T)
- **Dissociated**

Amblyopia
- “Lazy eye”
- Can be caused by muscle problem or refractive problem (anisometropic) – or even lid or corneal problems!
- If one eye stays blurred too long the body compensates by ignoring its impulses, and rotating it away to minimize “confusion”

Measurement Techniques
- By Corneal Light Reflex
 - **Hirschberg** estimating the angle of deviation by the degrees of decentration
 - **Krimsky** using a prism to center the corneal light reflex

Estimating deviations
- Hirschberg method – estimates using the position of a light reflex on the cornea – normal cornea 12 mm, so each mm away from center equals 15° P.D. (or ~7°)
 - ½ cornea = 6 mm
 - 6 X 15 = 90
- **Krimsky** method -uses prism to move the light reflexes on the cornea into equal positions on each eye
Cover Testing for **horizontal** diplopia:

- gaze positions to measure:
 + both side gazes
 + up and down ("A" or "V" patterns)
 + distance and near
 + with +3.00/-2.00 (especially XT)
 + fusional amplitudes

Accommodation: make sure to control it

- Non-accommodative target
- Accommodative Target

Accommodation: take advantage

- Accommodative Esotropia
- High AC/A ratio (measure with +3.00)
- Exotropia (measure with -2.00 at distance, +3.00 at near)

Cover Testing for **vertical** diplopia (watch lid movement)

- sides – Right and Left
- up and down
- tilts
- double Maddox Rod
- fusional amplitudes

Double Maddox Rod

Cover Testing: Vertical deviations
Intermittent Tropias

- Seem like they aren’t always there – they aren’t!
- Fusion only breaking down some of the time, so patients will sometimes be aware “something not right”
- Can be intermittent and alternating!

Fixing vs. Non-fixing Eye

- “Better” eye is usually fixating (preferred by the patient in “normal situations” “Primary deviation”
 - Parents will say it’s usually one eye (pictures may help)
 - When the “worse” eye fixates, the defect will GROW larger because it takes more “innervation” to make it move “Secondary deviation”
- In alternating defects, fixation shifts from one eye to the other easily – both eyes are being used, so amblyopia does NOT appear.

Paralytic Strabismus

- Implies nerve is involved
- Usually noticed by patient at onset – suddenly diplopia
- Pupils and lids are involved if CN III
 - Ex – R III palsy might show inability to move OD in, up, or down (limited). Also may have R ptosis from levator, and R miosis (from poor dilator function)
- Website to show:

Example: Acute VI N palsy

Example: III N palsy

Example: Grave’s and Myasthenia

Lid Fatigue

Watch RIGHT Upper Lid (our left) position in extended upgaze → fatigue
Pseudostrabismus

- Looks like an esotropia because the epicanthal folds are large or prominent
- Cover tests will show no movement, meaning pt. is orthophoric.

3-step test for vertical diplopia

1) map out the muscles
2) identify the direction of the deviation in **primary gaze**
3) identify the direction where the deviation is greatest in **side gaze**
4) identify the direction where the deviation is greatest in **head tilts**

Weak muscle
3 step test: let’s do one

Primary gaze
Right gaze
Left gaze

Right tilt
Left tilt
Note: Prism tilts with patient’s head

Other factors / “need to know”
- Stereo tests
- Six diagnostic positions of gaze (Not same as nine “cardinal” positions)
- Maddox Rod
- NPC/NPA
- Fusion, Simultaneous Macular Perception
- Diplopia (monocular vs. binocular)
- Risley / Rotary prism

Sensory Testing
- Worth 4-dot
- Stereo
- Color

Any questions????

- Thanks!

- My email addresses (if there are questions):
 - piarson@emory.edu